Nonparametric Transforms of Graph Kernels for Semi-Supervised Learning

نویسندگان

  • Xiaojin Zhu
  • Jaz S. Kandola
  • Zoubin Ghahramani
  • John D. Lafferty
چکیده

We present an algorithm based on convex optimization for constructing kernels for semi-supervised learning. The kernel matrices are derived from the spectral decomposition of graph Laplacians, and combine labeled and unlabeled data in a systematic fashion. Unlike previous work using diffusion kernels and Gaussian random field kernels, a nonparametric kernel approach is presented that incorporates order constraints during optimization. This results in flexible kernels and avoids the need to choose among different parametric forms. Our approach relies on a quadratically constrained quadratic program (QCQP), and is computationally feasible for large datasets. We evaluate the kernels on real datasets using support vector machines, with encouraging results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

Nonparametric Maximum Margin Similarity for Semi-Supervised Learning

1. Nonparametric Label Propagation (LP) has been proven to be effective for semi-supervised learning problems, and it predicts the labels for unlabeled data by a harmonic solution of an energy minimization problem which encourages local smoothness of the labels in accordance with the similarity graph. 2. On the other hand, the success of LP algorithms highly depends on the underlying similarity...

متن کامل

Kernel Selection for Semi-Supervised Kernel Machines

Existing semi-supervised learning methods are mostly based on either the cluster assumption or the manifold assumption. In this paper, we propose an integrated regularization framework for semi-supervised kernel machines by incorporating both the cluster assumption and the manifold assumption. Moreover, it supports kernel learning in the form of kernel selection. The optimization problem involv...

متن کامل

On the Choice of Kernel and Labelled Data in Semi-supervised Learning Methods

Semi-supervised learning methods constitute a category of machine learning methods which use labelled points together with unlabelled data to tune the classifier. The main idea of the semi-supervised methods is based on an assumption that the classification function should change smoothly over a similarity graph, which represents relations among data points. This idea can be expressed using ker...

متن کامل

Kernel conditional random fields : representation, clique selection, and semi-supervised learning

Kernel conditional random fields are introduced as a framework for discriminative modeling of graph-structured data. A representer theorem for conditional graphical models is given which shows how kernel conditional random fields arise from risk minimization procedures defined using Mercer kernels on labeled graphs. A procedure for greedily selecting cliques in the dual representation is then p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004